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Abstract. Despite their ubiquity and importance as freshwater habitat, small headwater streams are under monitored by 

existing stream gage networks. To address this gap, we describe a low-cost, non-contact, and low-effort method that enables 20 

organizations to monitor streamflow dynamics in small headwater streams. The method uses a camera to capture repeat 

images of the stream from a fixed position. A person then annotates pairs of images, in each case indicating which image has 

more apparent streamflow or indicating equal flow if no difference is discernible. A deep learning modelling framework 

called Streamflow Rank Estimation (SRE) is then trained on the annotated image pairs and applied to rank all images from 

highest to lowest apparent streamflow. From this result a relative hydrograph can be derived. We found that our modelled 25 

relative hydrograph dynamics matched the observed hydrograph dynamics well for 11 cameras at 8 streamflow sites in 

western Massachusetts. Higher performance was observed during the annotation period (median Kendall’s Tau rank 

correlation 0.75 with range 0.6-0.83) than after it (median Kendall’s Tau 0.59 with range 0.34 – 0.74).  We found that 

annotation performance was generally consistent across the eleven camera sites and two individual annotators and was 

positively correlated with streamflow variability at a site. A scaling simulation determined that model performance 30 

improvements were limited after 1,000 annotation pairs. Our model’s estimates of relative flow, while not equivalent to 

absolute flow, may still be useful for many applications, such as ecological modelling and calculating event-based 

hydrological statistics (e.g., the number of out-of-bank floods). We anticipate this method will be a valuable tool to extend 

existing stream monitoring networks and provide new insights on dynamic headwater systems. 
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1 Introduction 35 

Small headwater streams make up 50-70% of stream network length (Benda et al., 2004; McManamay and DeRolph, 2019) 

and are fundamental units of riverine networks. Streamflow dynamics in these streams are crucial controls on aquatic 

ecosystem function (Carlisle et al., 2017; Colvin et al., 2019; Hitt et al., 2022), thermal changes, and the routing of sediment 

and contaminants. Headwater streamflow dynamics are uniquely complex for the following reasons: 1) a majority of small 

(second-order or less) stream channels dry out seasonally or during drought events (Jaeger et al., 2021; Messager et al., 40 

2021), 2) along-channel changes can be abrupt due to geologic controls and focused groundwater inputs (Briggs et al., 2018), 

and 3) due to small catchment size, these streams are particularly susceptible to drastic hydrologic alterations, both 

anthropogenic (damming, impervious surface runoff) and natural (ice or beaver damming, wildfire effects, geomorphic 

changes).  

Despite their importance and vulnerability, headwater and non-perennial streams are underrepresented by 45 

streamflow monitoring networks in the United States. (Deweber et al., 2014; Seybold et al., 2023) and across the world 

(Krabbenhoft et al., 2022). Three primary limitations lead to a sparse headwater monitoring network: first, monitoring and 

maintaining traditional stage-discharge gage records (Turnipseed and Sauer, 2010) to a high quality requires expertise and 

training that limits the number of organizations able to collect the records. Second, velocity measurements in small, shallow, 

and slow-moving streams are difficult to collect and have high uncertainty, making the percentage error of streamflow 50 

discharge much higher in small streams than large streams (Horner et al., 2018; King et al., 2022; Levin et al., 2023; 

McMillan et al., 2012). Third, in-stream instruments to measure stage in headwater streams are frequently lost or damaged 

due to shifting streambeds, very high local velocities, and beaver or other animal activity. Even disregarding the challenges 

in collecting the data, where streams are non-perennial or form disconnected pools, traditional pressure transducer-based 

stage measurements provide incomplete information regarding (dis)connectedness of the stream channel, making these 55 

records inadequate for certain uses in ecohydrological modelling (Steward et al., 2012). 

Streamflow monitoring using imagery is an attractive alternative to in-stream instruments and has grown in 

popularity as camera technology has improved. Collecting imagery is appealing because it requires very little training or 

specialized equipment. However, analysing a large volume of imagery can be a challenge; a range of approaches has been 

introduced to date. Initially, manual interpretation (Schoener, 2018) or rules-based image processing techniques (Chapman et 60 

al., 2022; Gilmore et al., 2013; Leduc et al., 2018; Noto et al., 2022) were used to automate the reading of a staff gage placed 

in the channel. While effective and low-cost, these staff-plate based approaches still require the installation of in-channel 

infrastructure that may not be permitted in protected lands or can be damaged by high flows. Additionally, stage monitoring 

is restricted to the location of the staff plate; therefore, any debris on the staff plate or view blockage due to snow or 

vegetation will result in missed readings. Computer-vision based approaches that avoid the use of an in-channel staff plate 65 

have been introduced, but generally require the manual identification of a specific region of interest in the image (Keys et al., 
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2016), image orthorectification using ground control points, and detailed high-resolution 3D models of riverbed and bank 

geometry to estimate changes in stage (Eltner et al., 2018).  

 Advances in deep learning approaches for imagery analysis have created new opportunities for environmental 

monitoring. For example, several recent studies have applied deep learning to image-based stream stage monitoring to 70 

eliminate the need for fixed in-stream staff plates. Many of these papers use established image segmentation algorithms (i.e. 

convolutional neural networks) to classify parts of the image as “water” or “not-water” (Eltner et al., 2021; Liu and Huang, 

2024; Vandaele et al., 2021). Using a reference point on the image and knowledge of the interface location, the stream level 

is tracked over time. While effective, these approaches are sensitive to channel rearrangement or view blockage at the 

water/not-water interface. They also still require some manual judgement about the location of interest in the image frame 75 

for which stage is provided and image orthorectification using ground control points.  

Unlike other deep learning approaches for streamflow estimation, Streamflow Rank Estimation (SRE) was 

developed to minimize the need for external monitoring data to train a model (Gupta et al., 2022). The approach aims to 

estimate streamflow dynamics without the need for traditional discharge observations, an in-channel staff plate, designating 

a region of interest, or imagery orthorectification. SRE uses a learning-to-rank framework that is trained using many pairs of 80 

stream images, with discharge in the images of each pair visually compared, removing the need for stream discharge training 

data. We refer to the person-generated pairwise ranks as “annotations”. The model is trained using the annotations to sort 

images from high apparent streamflow to low apparent streamflow by fine-tuning a convolutional neural network (a ResNet-

18 (He et al., 2015) architecture pretrained on ImageNet (Deng et al., 2009)) and using a learning-to-rank approach utilizing 

the RankNet loss function (Burges et al., 2005). The rank of each image can be used to create a streamflow percentile which 85 

is correlated with the streamflow discharge and can be interpreted as a dimensionless hydrograph. While the absolute 

streamflow could be estimated from the streamflow percentile using an assumed streamflow discharge distribution, for 

unmonitored catchments this distribution would need to be estimated independently of the SRE model and would be a 

significant source of uncertainty in absolute streamflow estimates (Gupta et al., 2022). As a trade-off for low-effort model 

training and minimal external information requirements, the rank-based streamflow percentile estimate is the primary output 90 

produced by the SRE model. 

To date, the SRE model has been tested at a limited number of sites with simulated annotations derived from known 

streamflow discharge timeseries, but not with annotations created by people. With simulated annotations, SRE characterized 

streamflow percentile dynamics with a Kendall’s rank correlation greater than 0.7 in five of six stream locations (Gupta et 

al., 2022). The number of annotations (n = 500, 1000, 2500,10000) and annotators’ ranking ability (could discern 0%, 10%, 95 

20%, 50% discharge difference) both strongly influenced the model’s ranking performance. This promising early work 

motivated us to further evaluate the real-world performance of the model by using person-generated annotations and 

expanding the number of stream sites at which we assessed model performance. With a better understanding of the factors 

influencing model performance, we plan to apply SRE to currently unmonitored headwater catchments. 
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 This paper describes a methodology for monitoring streamflow dynamics in small headwater streams using 100 

timelapse imagery coupled with a deep learning model trained using person-generated annotation. We evaluate the real-

world performance of this monitoring system and answer the following questions:  

• How accurate are people at ranking images by streamflow? 
• How accurate are the image-derived relative hydrographs developed using person-generated annotations? 
• Which factors influence ranking model accuracy and can indicate which unmonitored catchments would be suitable 105 

for low-cost camera monitoring?  
• How many person-generated annotations are required to achieve stable ranking model performance? 

2 Methods 

2.1 Data Collection 

To collect timelapse imagery from low-cost cameras, this project developed a web platform titled the Flow Photo 110 

Explorer (https://www.usgs.gov/apps/ecosheds/fpe/). Since its inception in October 2021, the Flow Photo Explorer (FPE) 

platform has accepted imagery submissions from an array of organizations with a common motivation of enhancing and 

expanding stream monitoring networks. While guidelines are provided on the webpage, there are few restrictions on how 

cameras are configured and what views they capture. The only requirement is that the imagery format uploaded to the FPE 

platform is formatted with EXIF metadata, which is a common imagery data format across many low-cost battery-powered 115 

game or trail cameras. We recommend a photo every 15 minutes, though the FPE database contains intervals from less than 

5 minutes to once per day. The recommended camera view is looking downstream or upstream, though based on field 

conditions some sites may instead feature cross-stream or tangential views. We expect that the image-based monitoring 

approach will work best when at least some fixed objects (i.e. trees, boulders, bridge pilings, stream banks) are visible at all 

levels of streamflow. An example camera view with these fixed features visible is shown in Fig. 1. If a user knows a nearby 120 

U.S. Geological Survey (USGS) stream gage they can indicate the USGS station identifier and data are automatically pulled 

from the USGS National Water Information System (U.S. Geological Survey, 2024) database. Alternatively, they can upload 

their own streamflow observations, although they are not required. To test the methodology, we co-located 11 cameras with 

eight USGS gages in western Massachusetts for which records of stream discharge are available (Fair et al., 2025). Four 

cameras were located at the same streamflow monitoring location to examine the effect of differing camera angles on 125 

monitoring performance. In this study we collected imagery every 15 minutes with Reconyx (Hyperfire 2 model) Bushnell 

(Trophy and Essential models) cameras that were mounted to trees (except for one site that was affixed to a bridge) using 

swivel mounts and a secure metal housing. 
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Figure 1 – The recommended camera view includes stream banks and fixed objects such as trees or boulders visible at most 130 
flows. Photograph by the U.S. Geological Survey. 
 For this analysis we set minimum data availability criteria to test the method at sites with sufficient data. We 

expected that seasonal changes in vegetation, streamflow, and snow cover would appear in the imagery. Therefore, we 

selected sites with stream discharge and imagery data that spanned at least 1.5 years. We implemented this criterion to 

ensure that the model training period spanned at least one full year, so that all seasons were represented, and so that we 135 

additionally had access to a final half year of data for testing purposes. Within this span, we allowed some data gaps, since 

these are common in our available set of imagery data. We required at least 180 complete days of data within the 1.5 years, 

which is a completeness of approximately 33%. Table 1 contains a list of sites that met our data availability requirements. 

These locations are mapped in Fig. 2. In this analysis we used daytime-only imagery (from 7 am to 7 pm), though many sites 

have cameras with an infrared flash that also produce usable imagery at night.  140 

 To guide user site selection and setup, we evaluated patterns in model performance according to two key site 

attributes. The first is a measure of flow variability during the monitoring period. Some streams, such as those heavily 

influenced by groundwater discharge can have small fluctuations in stream stage that are difficult to identify in imagery. We 

selected the coefficient of variation (CV) of log-transformed streamflow log10(Q) to quantify the general variability of the 

stream. The second metric is a simple qualitative assessment of how stable the camera view is over the period of record. This 145 

metric is primarily for quantifying if there were abrupt changes in the field of view of the image time series, mainly 

coinciding with when the camera was serviced. Cameras can also shift slightly due to vibrations or wind changing the 

mounting position, though these types of shifts are minor alterations compared to abrupt view changes. In this rating system, 

a camera stability value of “Low” indicates that there was at least one camera view change of 50% or greater (i.e. only half 

of the original frame was still visible). “Medium” indicates at least one camera view change between 25% and 50%, while 150 

“High” indicates that all view changes were below 25%. These two attributes were selected to inform user site selection and 

field methods.  

https://doi.org/10.5194/egusphere-2025-1186
Preprint. Discussion started: 28 March 2025
c© Author(s) 2025. CC BY 4.0 License.



 

6 
 

 

Location 
ID 

Station Name 
(USGS Station 

ID) 

Monitoring 
Period 

% of 
images 
have 

observed 
stream 

flow 

Number of 
Annotations 

Training 
period 
CV of 

log10(Q) 

Camera 
stability 

Drainage 
area 
(km2) 

ABB Avery Brook 
Bridge 

(01171000) 

2021-03-10 to 
2024-04-02 

99.1 3,147 0.8 Low 7.8 

ABL Avery Brook 
River Left 

(01171000) 

2021-07-02 to 
2024-04-02 

98.8 2,277 0.8 High 7.8 

ABR Avery Brook 
River Right 
(01171000) 

2021-03-19 to 
2024-04-02 

99.3 2,214 0.8 Medium 7.8 

ABS Avery Brook 
Side 

(01171000) 

2021-03-19 to 
2024-04-02 

99.2 2,441 1.0 High 7.8 

GR Green River 
(01170100) 

2022-09-29 to 
2024-03-29 

99.2 5,057 0.2 High 107.2 

SB Sanderson 
Brook 

(01171010) 

2021-04-01 to 
2024-03-22 

70.9 4,821 1.2 Low 4.4 

WB0 West Brook 0 
(01171100) 

2022-02-01 to 
2024-04-02 

99.1 7,953 0.8 High 27.7 

WBL West Brook 
Lower 

(01171070) 

2019-02-27 to 
2024-04-09 

67.7 2,256 0.7 High 21.8 

WBR West Brook 
Reservoir 

(01171020) 

2021-03-25 to 
2024-03-22 

64.8 2,325 1.1 High 16.1 

WBSR West Branch 
Swift River 
(01174565) 

2017-09-14 to 
2024-03-28 

99.5 3,553 0.3 Medium 32.6 

WW West Whately 
(1171005) 

2021-04-06 to 
2024-04-09 

70.2 2,510 -2.5 Medium 1.3 

Table 1 - Summary of data collected at locations included in this analysis. Streamflow observations were originally reported 
in a USGS data release (Fair et al., 2025). “Training period CV of log10(Q)” refers to the coefficient of variation of log-155 
transformed streamflow discharge during the model training period. 
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`  

Figure 2 - Map of monitoring locations in western Massachusetts, USA (Fair et al., 2025; Goodling et al., 2025). Triangles 
in panels C and D indicate monitoring sites and are labelled with site identifiers listed in Table 1. Arrows in Panel D 160 
indicate streamflow direction. Water bodies shown are from the NHDPlus Version 2 (McKay et al., 2012) (panel C) and 
NHD High Resolution (Moore et al., 2019) (panel D) datasets. 

2.2 Data Annotation 

Training the neural network model to predict streamflow dynamics from imagery requires external site-specific 

information. Because we hope to use this method in places with no other information except for the imagery, we could not 165 

use any streamflow data in model training. Instead, we relied on people to rank pairs of images by streamflow in a process 

called ‘data annotation’. In the FPE web application, users were shown two photos side-by-side and asked to indicate which 

one had more streamflow (Fig. 3). The users also indicated if the images appear “about the same” or if the image was a “bad 

photo” (obscured or too dark). “Don’t know” was selected if the photo is bad or if other aspects of the images made them 

difficult to compare, such as a large difference in camera view or camera angle. Image pairs marked “don’t know” were not 170 

used in model training. In this study, users were only presented with images collected during daytime (7am – 7pm). A 

typical user completed an annotation in 1-3 seconds on average; if focused, an individual could perform approximately 1000 

annotations in an hour. Our dataset includes 17 unique annotators who contributed to the model training; however, only two 
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annotators represent 93.7% of all the annotations and we focus on these two in our discussion of annotator performance. 

Both of these annotators were student interns (one ecology graduate student, one environmental science undergraduate 175 

student). The student interns were associated with the project but had no specialized training or experience in streamflow 

monitoring. 

 
Figure 3 – The web-based annotation interface from the Flow Photo Explorer used in this study to develop training datasets 180 
for the ranking model. 
 The process of annotation was not error-free; the judgments made by individual annotators could sometimes be 

incorrect. This could be through simple errors of transcription (i.e. clicking the incorrect button) or because the imagery pairs 

were difficult to compare because of lighting, vegetation, or seasonal differences. These errors, if significant, could provide 

spurious information to the deep learning model. We therefore quantified the performance of our annotation dataset using the 185 

known true flow-based ranks from the co-located USGS gage data. Our primary metric was classification accuracy for the 

selection of the “left” or “right” image with higher streamflow in the image pair: 

(1)    𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 % 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

∗ 100  

Where TL and TR refer to true left and true right selections and FL and FR refer to false true and right selections. We 

observed that the difficulty of the selection increases, and therefore the classification accuracy decreases, if the two photos 190 

had similar streamflow. To fully describe annotation performance, we provide our metrics as functions of the relative flow 

difference between the images. The relative flow difference (∆𝑟𝑟𝑟𝑟𝑟𝑟) between a pair of photos shown to an annotator was 

calculated as: 

(2)      ∆𝑟𝑟𝑟𝑟𝑟𝑟=
|𝑄𝑄1−𝑄𝑄2|
1
2(𝑄𝑄1+𝑄𝑄2)
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Where Q1 and Q2 represent streamflow values for the two images. For positive values inclusive of zero, the value ∆𝑟𝑟𝑟𝑟𝑟𝑟 is 195 

bounded to be between zero and two. A ∆𝑟𝑟𝑟𝑟𝑟𝑟 value near zero indicates close agreement between Q1 and Q2 whereas a ∆𝑟𝑟𝑟𝑟𝑟𝑟  

value of 2 could indicate that one of the two values is approaching zero or infinity. We compute the overall classification 

accuracy within binned increments of 0.1 ∆𝑟𝑟𝑟𝑟𝑟𝑟; the unweighted binned performance is used to develop a function describing 

the relationship between ∆𝑟𝑟𝑟𝑟𝑟𝑟 and classification accuracy. 

2.3 Modelling Methodology 200 

Annotated images were ranked into an ordered sequence using the previously developed SRE neural network model 

(Gupta et al., 2022). The SRE neural network model takes an image as input, which includes three channels (RGB), and 

generates a dimensionless, continuous-valued score representing relative streamflow as output. The score is derived by 

applying a sequence of mathematical operations to the input image, including spatial convolutions, which help the model 

extract relevant features from the image. During training, the model is given batches of paired images ranked by annotators 205 

based on relative streamflow. The training objective is for the model to learn to assign a higher score to the image that the 

annotator ranks as having higher flow, or to assign the same score to both images if the annotator ranks them as having the 

same flow. Images are pre-processed by resizing, centre-cropping to exclude metadata bands, and normalizing. While 

training, data augmentations such as random crops, horizontal flips, rotations, and colour jitter are applied to improve model 

robustness, generalization, and reduce overfitting (Shorten and Khoshgoftaar, 2019). Additional detail on image pre-210 

processing is available in the supplemental materials. After training, the model is used to generate score predictions for all 

images from a site, which are then standardized into z-scores by subtracting the mean and dividing by the standard deviation.  

The imagery data were divided into training, testing, and validation splits to enable robust model evaluation. Unlike 

many machine learning applications, the model learns from image pairs and not individual images; therefore, these splits are 

a bit more complex to develop. When reporting model performance, we identify images that comprised pairs used for 215 

training (“train”) or validation (“val”). Images that were not part of any annotation pair provided to the model are used for 

“test”. We further divided this into “test-in”, which is coincident with the timeframe of annotation, and “test-out” (when 

available) for the period following the period with annotations. “All-in” is the combined set of images, regardless of if they 

are part of an annotation pair, during the annotation period. “All” is the performance for all images. We consider “test-in” to 

represent a retrospective model performance, while “test-out” to represent the expected performance of a deployed 220 

operational model on new imagery. 

 The sites in this study were co-located with traditional USGS streamflow gages, which enables us to evaluate model 

performance relative to these instruments. Our model performance metric is Kendall’s Tau, a nonparametric rank-based 

correlation coefficient (Kendall, 1938). We selected this metric because it is insensitive to monotonic transformations such 

as log-transformation and percentile calculations, making it appropriate to compare values on different scales and with 225 

different distributions. As a metric it is strict regarding timing; short-lived peaks, if slightly mis-timed, will result in low 

Kendall’s Tau. Because it is based on ranks, it is insensitive to the magnitude difference between two values. As a result, 
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low-flow observations, which are more common, have a greater influence on the resulting Kendall’s Tau than short-lived 

high-flow observations. 

 To provide a preliminary understanding of the factors influencing model performance we present pairwise 230 

relationships between annotation accuracy, streamflow variability, camera stability, and model performance. For 

comparisons among the numeric values we present the Pearson’s correlation coefficient and two-sided p-value calculated 

with the cor.test function in R version 4.3.2 (R Core Team, 2021). For comparisons between numeric values and the 

categorical camera stability metric, we present the results of the nonparametric Kruskal-Wallis test to evaluate if the 

distribution varies among the categories (Kruskal and Wallis, 1952). If significant, we perform Dunne’s post hoc pairwise 235 

multiple comparison test to identify which categories have statistically different distributions (Dunn, 1964). The Kruskal-

Wallis and Dunne’s tests are computed with the rstatix R package (Kassambara, 2023). 

2.4 Sensitivity analysis 

We performed a sensitivity analysis to understand how many person-generated annotations are required to achieve 

acceptable performance. In this case, the target performance level was that achieved by training the model with all available 240 

image pair annotations for a given site. We created nested subsets of the annotations, beginning with increments of 100 up to 

500, then using larger increments of 250 up to 1500, and finally using increments of 500 up to 3000, with additional subsets 

at 4000 and the maximum number of available annotations. Smaller increments were used at the lower end of the annotation 

range to capture the more substantial improvements in model performance that are typically observed with initial increases 

in training data. Each subset was a strict superset of the previous one, meaning that each larger subset contained all the pairs 245 

from the smaller subsets plus additional pairs. This allowed us to assess how increasing the volume of training data impacts 

model performance and to identify the point where performance plateaus, avoiding unnecessary annotation efforts that may 

not significantly improve performance. The sensitivity analysis reported the Kendall’s Tau model performance metric is for 

the “test-in” data split for daytime images (7am – 7pm). 

To ensure the robustness of our findings, the analysis was repeated five times. For each repetition, we randomly 250 

permuted the order of the annotations before generating the nested subsets, thereby mitigating any potential variance that 

could arise from the specific sequence of training samples.  

3 Results 

3.1 Annotation results 

 Annotation performance in our dataset was high (average 92.2% accuracy) and was generally consistent across sites 255 

and annotators. Accuracy was well-described by an increasing function of the relative flow difference (global 4th order 

polynomial, R2 = 0.89, Fig. 4, red lines). At all sites, annotation accuracy neared 100% accuracy above a relative flow 

difference of 1 (which occurs when one image has three times as much streamflow as the other). As the relative flow 
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difference neared 0, classification accuracy approached 50%, which is equivalent to guessing between the photos. Similar 

curves are observed for the two primary annotators (represented by symbols in Fig. 4). To characterize the overall accuracy 260 

of the annotation at a site, the percent accuracy of all annotations regardless of relative flow difference is reported in each 

panel of Fig. 4. The site with the lowest overall annotation performance—West Whately, with an 84% overall accuracy—

had the lowest streamflow coefficient of variation a “medium” level of camera stability (Table 1).  

 

 265 
Figure 4 – Annotation accuracy for each site as a function of the relative difference in streamflow between the two images 
shown to the annotator. Percent accuracy was computed for annotations in binned intervals of 0.1 relative flow difference. 
Two annotators (represented with symbols and named with 5-digit alphanumeric identifier) performed annotations across 
the 11 camera sites. The red line is a 4th order polynomial fit across all 11 camera sites, with equation and fit statistic shown 
at the bottom of the figure. 270 
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3.2 Modelling Results 

Predictions from models trained on person-generated annotations were found to represent both individual storm 

events and inter-annual hydrologic changes with a satisfactory degree of fidelity, with “test-in” Kendall’s Tau values ranging 

from 0.60 to 0.83 (Fig. 5). This “test-in” set represents expected performance during the same period as for which 

annotations were created. The “test-out” period, while not available for all sites, represents predictions for a new period 275 

following an annotation as in an operational prediction with a deployed model. The value “all-in” is a mix of 

test/training/validation data occurring during the training period and is representative of a retrospective prediction or 

hindcast. The value “all” is for all imagery in the dataset combined. Most models have a slight decrease in performance 

(approximately 0.02) when comparing the training to test-in. This decrease is a measure of overfit to the data. Green River 

has the greatest decrease (0.08, or 10%). A review of the annotations for this site shows a low density in annotations at the 280 

end of the training period that could account for this difference. Where available, the test-out performance is lower than test-

in performance (mean decrease is 0.20), suggesting a decreased ability to generalize to new flow conditions or camera views.  

Within our camera monitoring dataset, we have several co-located cameras that were independently annotated and 

trained (lighter colour bars in Fig. 5). Four co-located cameras exhibited similar test-in performance, although a 

downstream-facing view had slightly lower performance than the other three. For the test-out period, two sites (Avery Brook 285 

River Left and Avery Brook Side) have much better performance than the other two. These sites have “high” camera 

stability and greater annotation accuracy than the other two sites. The streamflow has the similar (but not identical) 

coefficient of variation due to the differing monitoring timeframes among the cameras.  

Model prediction timeseries show a clear correspondence with observed streamflow timeseries, especially when 

both datasets are displayed as rank percentile units (Fig. 6; supplemental materials). Major hydrologic events such as a 290 

drought that occurred in this area from June- September of 2022 and a prolonged wet period in July-August of 2023 are 

visible in the estimates derived solely from the imagery model. The duration and magnitude of major hydrologic events 

match well between observed streamflow and model predictions. Short-lived peaks from individual storm events are also 

well-characterized by their timing and general magnitude.  

 Model performance of the “test-in” set, annotation performance, flow variability, and camera stability were found to 295 

be highly interrelated (Fig. 7). Positive correlations were observed between flow variability and annotation accuracy (Panel 

A), flow variability and model performance (Panel C), annotation accuracy and model performance (Panel D). West Whately 

is an outlier to some extent; we report Pearson’s correlation coefficients and p-values with and without this camera site. The 

relationship between annotation accuracy and model performance (Panel D) has the highest correlation and is least affected 

by the outlier presence. Camera stability, a categorical variable, was weakly related to annotation accuracy (Panel B). The 300 

Kruskal-Wallis test indicates that the annotation performance is non-identical across the three stability classes at the 0.05 

significance level. The post hoc Dunn’s pairwise multiple comparison test shows the only significant difference is between 

the “high” stability and “medium” stability classes. The Kruskal-Wallis test indicates there is no significant difference in 
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Kendall’s Tau among the stability classes (Panel E). Among the four cameras located on the same stream reach (shown with 

lighter shading), the highest performance in annotation accuracy and prediction Kendall’s Tau was observed for Avery 305 

Brook River Left, which had a highly stable camera. 

 

 
 Figure 5 – Summary of model performance, as defined by Kendall’s Tau correlation, between observed and estimated 
streamflow percentile. Results are presented for 11 sites, 4 of which are co-located. Site abbreviations shown in brackets. 310 
Results are presented for six different sets of the data. The set “test-in” represents unseen images coincident with the 
training period. The set “test-out”, which is not available at all locations, represents unseen images following the training 
period.  
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 315 
Figure 6 – Timeseries prediction at a single site representing intermediate model performance. Top two panels show the 
streamflow, middle two panels show the predicted model score, bottom two panels show both when transformed to rank 
percentile. The left column indicates the full period of record, the right column is an inset. In the inset plots, daily means are 
plotted as dots and the 15-minute interval predictions are plotted with lines. Prediction timeseries for all sites are shown in 
the supplemental materials. 320 
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Figure 7 – Relationships between flow variability and annotation accuracy (panel A), camera stability and annotation 
accuracy (panel B), flow variability and model performance (panel C), annotation accuracy and model performance (panel 325 
D), and model performance and camera stability category (panel E). Flow Variability is quantified with the coefficient of 
variation of log-transformed streamflow. Model performance is the “test-in” split. Point labels refer to site number listed in 
Table 1. The four co-located cameras are indicated with light grey square symbols. Panels A, C, and D have text indicating 
the Pearson’s correlation coefficient and significance at the p<0.05 level; values are provided for without the West Whately 
site (“w/o WW”) and for all sites (“all”). Panels B and E have text with the Kruskal-Wallis significance test at the p<0.05 330 
level. Where significant, the post hoc Dunn’s pairwise multiple comparison test is performed. An asterisk indicates 
significance at the p<0.05 level while “ns” indicates not significant at that level. 
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3.3 Sensitivity analysis 

The sensitivity analysis we employed allowed us to examine the relationship between number of annotations and 

model performance. For most sites, “test-in” model performance improves significantly from 100 annotations to 500 335 

annotations, as the models learn more relevant features for inferring relative streamflow (Fig. 8). Generally, the spread of 

individual iterations (n = 5) was small relative to the performance improvement associated with increasing annotations. The 

model performance plateaus around 1000 annotations for most sites. Beyond this point, additional annotations offer minimal 

gains, suggesting that the model is not extracting further useful information from the additional annotations.  

 340 

  
Figure 8 - Model performance as function of the number of annotations used to train the model. Coloured lines indicate 
individual scaling experiments (n=5), the black line and points indicate mean performance. Dotted vertical line shows 1000 
annotations. Axis limits vary among panels. Performance computed on daytime (7am – 7pm) photos only. Subplots labelled 
with site name and number described in Table 1. 345 
 

https://doi.org/10.5194/egusphere-2025-1186
Preprint. Discussion started: 28 March 2025
c© Author(s) 2025. CC BY 4.0 License.



 

17 
 

4 Discussion 

 We find that a low-cost methodology for monitoring relative streamflow dynamics in headwater streams is effective 

at characterizing interannual hydrologic events and short-term storm responses at the stream sites within our study. Based on 

our encouraging results, we anticipate the approach will provide a valuable alternative to traditional stream gaging methods 350 

when relative streamflow dynamics information is needed but the streamflow discharge is not required. The person-

generated annotation, model performance patterns, and sensitivity analysis performed in this study have implications for how 

we refine the modelling approach and provide guidance to users as this platform evolves.  

This study was our first insight into annotator accuracy. In a previous study outlining the SRE method (Gupta et al., 

2022), the ability to correctly rank the image pair was varied systematically using simulations. In that study, in addition to a 355 

perfect annotator, the authors simulated annotations with varying ability to discern between “same” apparent streamflow and 

“left” or “right” streamflow. The thresholds they tested included 10%, 20%, and 50% of the lesser discharge. The authors 

found a less discerning annotator had to perform more annotations to train a model that reached similar performance as one 

trained on annotations from a more discerning annotator. However, these annotators could not make mistakes; incorrect 

labels were not introduced. Conversely, in this study, people performed annotations. While the overall accuracy of the 360 

annotators at individual sites ranges from 84% - 96%, these accuracy statistics obscure another feature of annotation – 

annotators are near perfect at distinguishing large differences in flow and less accurate at distinguishing small differences in 

flow. Even when provided with a “same” button and a “don’t know” button, annotators make mistakes at small differences 

in flow. This is likely due to the difficulty of the task in the presence of camera angle shifts, obscuring vegetation, changes in 

channel morphology, and the fact that it is simply difficult to discern small differences in streamflow visually. Annotation 365 

performance in our dataset followed similar patterns for two annotators and across 11 camera sites, such that all data could 

be reasonably fit with a single mathematical function (see Fig. 4). Future studies could use this function to simulate 

annotator performance more accurately than previous threshold-based simulations. This study primarily relied on annotations 

from two individuals with similar backgrounds and a single annotator worked on each site, resulting in a potential conflation 

of annotator and site variability. Future work using larger annotation datasets or designed common annotation sets could 370 

better assess the range of skill across individuals and backgrounds.  

This study’s models, trained with person-generated annotations, produced a timeseries of streamflow percentile 

estimates analogous to a relative hydrograph that can be used to monitor the timing, duration, and relative magnitude of 

hydrologic events (Fig. 6; Supplemental Materials). All performance metrics in this paper are provided for the original 

approximately 15-minute interval frequency of the imagery and streamflow data, though the timeseries plots of model 375 

predictions do show substantial sub-daily variability in streamflow percentiles. For example, at times in late 2023, daily 

percentiles at site Avery Brook Bridge consistently range from nearly 25 % to 90% (Fig. 6). A review of individual images 

during times of high sub-daily percentile variability shows that outliers in model prediction can be introduced by the 

presence of sun glare on the camera, vegetation blocking the camera view, twilight conditions, fog/haze, and other factors 
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that present the model with unfamiliar views (Supplemental Materials, section 3). Since we allow annotators to exclude 380 

photos that are obscured, the model is not trained on these images which leads to poorer performance. A focus of future 

work on identifying and excluding these images will likely reduce the variability at a sub-daily scale resulting from poor 

images. Even in the presence of these features, the daily mean values plotted correspond well with major hydrologic events, 

such as a drought in the summer of 2022 that affected the region, and individual storm events. Users of this modelled relative 

streamflow data could create daily mean values if they were interested in results at this scale. However, we report sub-daily 385 

model performance because the headwater streams that are a focus of this work are highly responsive to storm events and it 

is also important to capture these events to understand and characterize streamflow dynamics. 

Where available, this study found lower model performance for the `test-out` period than the `test-in` period, 

though the degree of performance decrease varied among sites. Even for the four co-located sites on Avery Brook the 

decrease in model performance from `test-in` to `test-out` varied substantially (Fig. 5). We believe this may be due to a 390 

combination of new camera views not seen in training and the fact that the `test-out` period often included winter which can 

be a period of lower performance due to snow obscuring the stream. Due to the limited availability of sites with `test-out` 

periods, we are unable to draw conclusions that might hold true for other sites. Creating models from longer paired imagery 

and streamflow records with more extensive `test-out` periods will support future efforts to minimize performance loss for 

the `test-out` period, likely through improvements in the image augmentation steps of the modelling procedure. 395 

 Model performance among sites seems to be driven by the variability of the streamflow during the monitoring 

period. We find that annotator and model performance at sites that have very steady flow is low relative to sites experiencing 

wide variation in observed streamflow. To some extent this is a consequence of the Kendall’s Tau as a performance metric; 

where a small range in the overall data causes small fluctuations in stream discharge to manifest as large fluctuations in rank 

percentile. However, physical characteristics matter– for this method to perform well the stream needs to have visible 400 

changes in streamflow during the training period. The site in this study with the lowest streamflow coefficient of variation, 

West Whately, also had a very low stream depth such that the water surface was difficult to see within a meandering channel 

and in the presence of leaves. Future work with more sites will be better positioned to evaluate how camera stability, flow 

variability, other factors affect annotation and model performance. This study refines user guidance in two important ways. 

First, our results suggest that sites that experience a wide range of flows (or for long enough that a wide range of flows are 405 

experienced) will have higher model performance. Second, since our simple camera stability classification has a weak 

association with annotator accuracy and no significant relationship with model performance, the method is robust to slight 

changes in camera angle and can still be used if these shifts are present. More complex frame-tracking algorithms to quantify 

camera stability could further improve insights into the robustness of the method to camera shifts. 

 A key requirement of this methodology is the need for a person to perform annotations on the imagery datasets. 410 

Anecdotally, users typically annotate at an average pace of 1,000 image pairs per hour using the interface. However, in 

practice, annotations are typically performed in smaller batches (100-200 images per batch) with breaks in between resulting 

in a slower effective pace. The sensitivity analysis performed in this study helps evaluate the number of annotations to reach 
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near-optimal model performance while not wasting annotator effort. For our available sites and annotation datasets we 

approximate 1,000 annotations as a reasonable guideline when creating a new model. While there is slight variability among 415 

the sites, the consistency of the shape of the curves shown in Fig. 8 suggests that a single guideline is reasonable. The 

number of annotations may also be controlled by factors not included in the sensitivity analysis such as the record length and 

annotator accuracy. Additional sensitivity analyses, likely using synthetic annotation datasets, could further refine the 

guideline for how many annotations to perform when developing ranking models at new sites. 

The output of the deep learning model is a relative flow percentile estimate. Although streamflow discharge (i.e. a 420 

flow rate with units of volume per time) is a more familiar metric, relative flow has value for several applications. With 

relative flow estimates we can 1) evaluate the duration and timing of disturbances such as drought and flood events, 2) 

provide inputs to statistical models such as ecological population models that may not require absolute streamflow accuracy, 

3) establish or confirm relationships between streamflow at a study reach and at other nearby locations, 4) evaluate the 

ability of models to simulate streamflow dynamics at a study reach, 5) provide the basis for counting the exceedance of site-425 

relevant thresholds (for example, the number of times a roadway inundated) . These outputs are aligned with the work of 

other authors to use semiquantitative observations to study headwater streams, for example stream connectivity (Bellucci et 

al., 2020; Kaplan et al., 2019). Nevertheless, some applications require absolute flow, and in future work we intend to 

explore approaches to transform relative flow estimates produced by the SRE model into absolute streamflow discharge 

estimates, either by periodically measuring discharge at the site or by using discharge data from nearby locations (if 430 

available). For now, we intend to communicate the appropriate use of these relative percentile estimates and avoid implying 

that streamflow discharge is produced by this work.  

 Because our study reports relative rather than absolute streamflow, it is difficult to directly compare our model 

performance against other similar work. We report our performance with the rank-based Kendall’s Tau value, which is 

analogous to a nonparametric R2 value appropriate to our model outputs. Similar studies using timelapse camera imagery to 435 

monitor rivers focus on reproducing point-in-time stage observations, often using in-channel calibration targets such as staff 

gages (Chapman et al., 2022; Eltner et al., 2018; Gilmore et al., 2013; Kim et al., 2011; Lin et al., 2018; Nguyen et al., 

2009). These studies vary in approach, though typical steps include identifying the target and water surface, performing an 

orthorectification of the image into real world space, and conducting a measurement of a visual target. Typically, authors 

report sub-centimetre level accuracy. For example, a field study of uncertainty of one system reported ±5 mm accuracy at the 440 

90% confidence interval in a tidal marsh environment with tranquil waters, though the authors noted this system was 

unsuited to fast-moving turbulent water such as the mountainous headwater streams in our dataset (Birgand et al., 2022). A 

deep-learning water segmentation-based approach reported Spearman correlations between independent stage measurements 

ranging from 0.57 to 0.94 at a single well-characterized gage site in eastern Germany (Eltner et al., 2021). We note these 

performance metrics reported by other similar studies, though due to differences in the model outputs our performance 445 

metrics are not directly comparable. Where evaluated in the field, most similar studies report results for single sites and/or 

for durations of less than 1 year (Birgand et al., 2022; Eltner et al., 2021; Leduc et al., 2018; Liu and Huang, 2024; Schoener, 
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2018), making this study’s multi-year monitoring of 11 camera sites a comparatively robust representation of model 

performance. 

 This work, while promising, is limited in a few important ways. Primarily, this system is not (and is not intended to 450 

be) a replacement for high accuracy stream stage or discharge measurements that are required for many applications such as 

computing streamflow trend, calculating nutrient loads, or supporting water management decision making. Users of this 

system must understand the relative nature of the results and determine if relative streamflow hydrographs are suitable for 

their application; we envision suitable applications to include habitat characterization, aquatic species population dynamics 

modelling, refining process understanding in small catchment studies, intermittent stream monitoring, and characterizing 455 

event (i.e. flood or drought) timing. In this study, model training and prediction is limited to daytime imagery, which we 

defined simply as between 7am and 7pm local time. While these cameras also have infrared flash that illuminates the 

channel, the degree to which the scene is visible at night varies significantly between sites. The imagery at night becomes 

greyscale and we expect that different portions of the imagery become important for a model. It is unclear if nighttime 

imagery is best modelled with both day and nighttime imagery or if a night-only model should be trained, and future work 460 

may investigate this. We also noticed that lens fog, camera glare, vegetation blockages, and other visual impediments had a 

negative impact on model performance. When present, these image issues typically resulted in abrupt high or low outliers in 

model score. For this analysis we retained these predictions as part of the overall evaluation. We expect computer vision 

algorithms to detect and remove these images which would further improve model performance. Data collection on the Flow 

Photo Explorer platform enables users to flag “bad” images during data annotation, which will enable us to develop outlier 465 

detection algorithms for this purpose. 

5 Conclusions 

 The camera-based methodology discussed here offers a novel approach to estimating streamflow. Its low cost and 

effort requirements should make it feasible to create dense observation networks to fill gaps in existing streamflow 

monitoring observations and thereby improve understanding of streamflow dynamics in headwater streams. While currently 470 

limited to estimates of relative streamflow trained as single-site models, we expect continued improvements that will expand 

the applicability and improve the ease of training models for new locations. The purpose of this paper was to answer 

questions regarding based on an initial set of monitoring stations. These findings will guide further development of the Flow 

Photo Explorer integrated web platform that allows users to upload, annotate, model, and interpret headwater stream 

imagery. To summarize, this study answers the following questions: 475 

• How accurate are people at ranking images by streamflow? 

o Overall annotation accuracy of left/right selection ranged from 84% to 96% (average of 92.2%) among the 

11 camera sites. While limited to primarily two individuals, we see that our annotators are nearly 100% 

accurate at ranking stream image pairs when there are large differences in observed streamflow. Small 
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differences in streamflow between image pairs were more difficult for the annotators to identify. Due to 480 

consistency among sites, the accuracy of person-generated streamflow annotations used in this study can 

be reasonably simulated with a single globally fit equation. 

• How accurate are image-derived relative hydrographs developed using person-generated annotations? 

o Kendall’s Tau values for streamflow percentile predictions ranged from 0.6 to 0.83 for unannotated days 

within the training period. These represent the retrospective model performance. Lower performance was 485 

observed for predictions on data collected after the training period, which may have a different distribution 

of streamflow or changes to the image scene. Where available, Kendall’s Tau values for the post-training 

period range from 0.34 to 0.74.  

• Which factors influence ranking model accuracy that and indicate which unmonitored catchments would be suitable 

for low-cost camera monitoring?  490 

o The primary factor describing among-site differences in performance was streamflow variability. 

Describing relative streamflow changes in streams with steady flow was challenging, in part due to our 

relative (percentile-based) metrics of performance. We expect better performance for streams that exhibit 

large stage variations, are seasonally dry, or have large seasonal variations in flow. 

•  How many person-generated annotations are required to achieve stable ranking model performance? 495 

o An experiment indicated that for most sites there were diminishing improvements in performance after 

about 1,000 pairwise annotations. We therefore conclude this is a reasonable minimum number of 

annotations to develop a ranking model. 

Code Availability 

Modelling code is provided at this GitHub code repository: https://github.com/EcoSHEDS/fpe-model (fpe-model v0.9.0). 500 

Data Availability 

The imagery, streamflow data, and model results used in this study are publicly visible on webpage 

(https://www.usgs.gov/apps/ecosheds/fpe). Streamflow data were originally reported in a U.S. Geological Survey data 

release (Fair et al., 2025). Model predictions, annotation data, and sensitivity analysis data are also available as a USGS data 

release (Goodling et al., 2025). 505 
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