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Abstract. Despite their ubiquity and importance as freshwater habitat, small headwater streams are under monitored by
existing stream gage networks. To address this gap, we describe a low-cost, non-contact, and low-effort method that enables
organizations to monitor streamflow dynamics in small headwater streams. The method uses a camera to capture repeat
images of the stream from a fixed position. A person then annotates pairs of images, in each case indicating which image has
more apparent streamflow or indicating equal flow if no difference is discernible. A deep learning modelling framework
called Streamflow Rank Estimation (SRE) is then trained on the annotated image pairs and applied to rank all images from
highest to lowest apparent streamflow. From this result a relative hydrograph can be derived. We found that our modelled
relative hydrograph dynamics matched the observed hydrograph dynamics well for 11 cameras at 8 streamflow sites in
western Massachusetts. Higher performance was observed during the annotation period (median Kendall’s Tau rank
correlation 0.75 with range 0.6-0.83) than after it (median Kendall’s Tau 0.59 with range 0.34 — 0.74). We found that
annotation performance was generally consistent across the eleven camera sites and two individual annotators and was
positively correlated with streamflow variability at a site. A scaling simulation determined that model performance
improvements were limited after 1,000 annotation pairs. Our model’s estimates of relative flow, while not equivalent to
absolute flow, may still be useful for many applications, such as ecological modelling and calculating event-based
hydrological statistics (e.g., the number of out-of-bank floods). We anticipate this method will be a valuable tool to extend

existing stream monitoring networks and provide new insights on dynamic headwater systems.
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1 Introduction

Small headwater streams make up 50-70% of stream network length (Benda et al., 2004; McManamay and DeRolph, 2019)
and are fundamental units of riverine networks. Streamflow dynamics in these streams are crucial controls on aquatic
ecosystem function (Carlisle et al., 2017; Colvin et al., 2019; Hitt et al., 2022), thermal changes, and the routing of sediment
and contaminants. Headwater streamflow dynamics are uniquely complex for the following reasons: 1) a majority of small
(second-order or less) stream channels dry out seasonally or during drought events (Jaeger et al., 2021; Messager et al.,
2021), 2) along-channel changes can be abrupt due to geologic controls and focused groundwater inputs (Briggs et al., 2018),
and 3) due to small catchment size, these streams are particularly susceptible to drastic hydrologic alterations, both
anthropogenic (damming, impervious surface runoff) and natural (ice or beaver damming, wildfire effects, geomorphic
changes).

Despite their importance and vulnerability, headwater and non-perennial streams are underrepresented by
streamflow monitoring networks in the United States. (Deweber et al., 2014; Seybold et al., 2023) and across the world
(Krabbenhoft et al., 2022). Three primary limitations lead to a sparse headwater monitoring network: first, monitoring and
maintaining traditional stage-discharge gage records (Turnipseed and Sauer, 2010) to a high quality requires expertise and
training that limits the number of organizations able to collect the records. Second, velocity measurements in small, shallow,
and slow-moving streams are difficult to collect and have high uncertainty, making the percentage error of streamflow
discharge much higher in small streams than large streams (Horner et al., 2018; King et al., 2022; Levin et al., 2023;
McMillan et al., 2012). Third, in-stream instruments to measure stage in headwater streams are frequently lost or damaged
due to shifting streambeds, very high local velocities, and beaver or other animal activity. Even disregarding the challenges
in collecting the data, where streams are non-perennial or form disconnected pools, traditional pressure transducer-based
stage measurements provide incomplete information regarding (dis)connectedness of the stream channel, making these
records inadequate for certain uses in ecohydrological modelling (Steward et al., 2012).

Streamflow monitoring using imagery is an attractive alternative to in-stream instruments and has grown in
popularity as camera technology has improved. Collecting imagery is appealing because it requires very little training or
specialized equipment. However, analysing a large volume of imagery can be a challenge; a range of approaches has been
introduced to date. Initially, manual interpretation (Schoener, 2018) or rules-based image processing techniques (Chapman et
al., 2022; Gilmore et al., 2013; Leduc et al., 2018; Noto et al., 2022) were used to automate the reading of a staff gage placed
in the channel. While effective and low-cost, these staff-plate based approaches still require the installation of in-channel
infrastructure that may not be permitted in protected lands or can be damaged by high flows. Additionally, stage monitoring
is restricted to the location of the staff plate; therefore, any debris on the staff plate or view blockage due to snow or
vegetation will result in missed readings. Computer-vision based approaches that avoid the use of an in-channel staff plate

have been introduced, but generally require the manual identification of a specific region of interest in the image (Keys et al.,



70

75

80

85

90

95

https://doi.org/10.5194/egusphere-2025-1186
Preprint. Discussion started: 28 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

2016), image orthorectification using ground control points, and detailed high-resolution 3D models of riverbed and bank
geometry to estimate changes in stage (Eltner et al., 2018).

Advances in deep learning approaches for imagery analysis have created new opportunities for environmental
monitoring. For example, several recent studies have applied deep learning to image-based stream stage monitoring to
eliminate the need for fixed in-stream staff plates. Many of these papers use established image segmentation algorithms (i.e.
convolutional neural networks) to classify parts of the image as “water” or “not-water” (Eltner et al., 2021; Liu and Huang,
2024; Vandaele et al., 2021). Using a reference point on the image and knowledge of the interface location, the stream level
is tracked over time. While effective, these approaches are sensitive to channel rearrangement or view blockage at the
water/not-water interface. They also still require some manual judgement about the location of interest in the image frame
for which stage is provided and image orthorectification using ground control points.

Unlike other deep learning approaches for streamflow estimation, Streamflow Rank Estimation (SRE) was
developed to minimize the need for external monitoring data to train a model (Gupta et al., 2022). The approach aims to
estimate streamflow dynamics without the need for traditional discharge observations, an in-channel staff plate, designating
a region of interest, or imagery orthorectification. SRE uses a learning-to-rank framework that is trained using many pairs of
stream images, with discharge in the images of each pair visually compared, removing the need for stream discharge training
data. We refer to the person-generated pairwise ranks as “annotations”. The model is trained using the annotations to sort
images from high apparent streamflow to low apparent streamflow by fine-tuning a convolutional neural network (a ResNet-
18 (He et al., 2015) architecture pretrained on ImageNet (Deng et al., 2009)) and using a learning-to-rank approach utilizing
the RankNet loss function (Burges et al., 2005). The rank of each image can be used to create a streamflow percentile which
is correlated with the streamflow discharge and can be interpreted as a dimensionless hydrograph. While the absolute
streamflow could be estimated from the streamflow percentile using an assumed streamflow discharge distribution, for
unmonitored catchments this distribution would need to be estimated independently of the SRE model and would be a
significant source of uncertainty in absolute streamflow estimates (Gupta et al., 2022). As a trade-off for low-effort model
training and minimal external information requirements, the rank-based streamflow percentile estimate is the primary output
produced by the SRE model.

To date, the SRE model has been tested at a limited number of sites with simulated annotations derived from known
streamflow discharge timeseries, but not with annotations created by people. With simulated annotations, SRE characterized
streamflow percentile dynamics with a Kendall’s rank correlation greater than 0.7 in five of six stream locations (Gupta et
al., 2022). The number of annotations (n = 500, 1000, 2500,10000) and annotators’ ranking ability (could discern 0%, 10%,
20%, 50% discharge difference) both strongly influenced the model’s ranking performance. This promising early work
motivated us to further evaluate the real-world performance of the model by using person-generated annotations and
expanding the number of stream sites at which we assessed model performance. With a better understanding of the factors

influencing model performance, we plan to apply SRE to currently unmonitored headwater catchments.
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This paper describes a methodology for monitoring streamflow dynamics in small headwater streams using
timelapse imagery coupled with a deep learning model trained using person-generated annotation. We evaluate the real-
world performance of this monitoring system and answer the following questions:

e How accurate are people at ranking images by streamflow?

e How accurate are the image-derived relative hydrographs developed using person-generated annotations?

e  Which factors influence ranking model accuracy and can indicate which unmonitored catchments would be suitable
for low-cost camera monitoring?

e How many person-generated annotations are required to achieve stable ranking model performance?

2 Methods

2.1 Data Collection

To collect timelapse imagery from low-cost cameras, this project developed a web platform titled the Flow Photo

Explorer (https://www.usgs.gov/apps/ecosheds/fpe/). Since its inception in October 2021, the Flow Photo Explorer (FPE)

platform has accepted imagery submissions from an array of organizations with a common motivation of enhancing and
expanding stream monitoring networks. While guidelines are provided on the webpage, there are few restrictions on how
cameras are configured and what views they capture. The only requirement is that the imagery format uploaded to the FPE
platform is formatted with EXIF metadata, which is a common imagery data format across many low-cost battery-powered
game or trail cameras. We recommend a photo every 15 minutes, though the FPE database contains intervals from less than
5 minutes to once per day. The recommended camera view is looking downstream or upstream, though based on field
conditions some sites may instead feature cross-stream or tangential views. We expect that the image-based monitoring
approach will work best when at least some fixed objects (i.e. trees, boulders, bridge pilings, stream banks) are visible at all
levels of streamflow. An example camera view with these fixed features visible is shown in Fig. 1. If a user knows a nearby
U.S. Geological Survey (USGS) stream gage they can indicate the USGS station identifier and data are automatically pulled
from the USGS National Water Information System (U.S. Geological Survey, 2024) database. Alternatively, they can upload
their own streamflow observations, although they are not required. To test the methodology, we co-located 11 cameras with
eight USGS gages in western Massachusetts for which records of stream discharge are available (Fair et al., 2025). Four
cameras were located at the same streamflow monitoring location to examine the effect of differing camera angles on
monitoring performance. In this study we collected imagery every 15 minutes with Reconyx (Hyperfire 2 model) Bushnell
(Trophy and Essential models) cameras that were mounted to trees (except for one site that was affixed to a bridge) using

swivel mounts and a secure metal housing.
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Figure 1 — The recommended camera view includes stream banks and fixed objects such as trees or boulders visible at most
Sflows. Photograph by the U.S. Geological Survey.
For this analysis we set minimum data availability criteria to test the method at sites with sufficient data. We

expected that seasonal changes in vegetation, streamflow, and snow cover would appear in the imagery. Therefore, we
selected sites with stream discharge and imagery data that spanned at least 1.5 years. We implemented this criterion to
ensure that the model training period spanned at least one full year, so that all seasons were represented, and so that we
additionally had access to a final half year of data for testing purposes. Within this span, we allowed some data gaps, since
these are common in our available set of imagery data. We required at least 180 complete days of data within the 1.5 years,
which is a completeness of approximately 33%. Table 1 contains a list of sites that met our data availability requirements.
These locations are mapped in Fig. 2. In this analysis we used daytime-only imagery (from 7 am to 7 pm), though many sites
have cameras with an infrared flash that also produce usable imagery at night.

To guide user site selection and setup, we evaluated patterns in model performance according to two key site
attributes. The first is a measure of flow variability during the monitoring period. Some streams, such as those heavily
influenced by groundwater discharge can have small fluctuations in stream stage that are difficult to identify in imagery. We
selected the coefficient of variation (CV) of log-transformed streamflow logio(Q) to quantify the general variability of the
stream. The second metric is a simple qualitative assessment of how stable the camera view is over the period of record. This
metric is primarily for quantifying if there were abrupt changes in the field of view of the image time series, mainly
coinciding with when the camera was serviced. Cameras can also shift slightly due to vibrations or wind changing the
mounting position, though these types of shifts are minor alterations compared to abrupt view changes. In this rating system,
a camera stability value of “Low” indicates that there was at least one camera view change of 50% or greater (i.e. only half
of the original frame was still visible). “Medium” indicates at least one camera view change between 25% and 50%, while
“High” indicates that all view changes were below 25%. These two attributes were selected to inform user site selection and

field methods.
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Location = Station Name Monitoring % of Number of
ID (USGS Station Period images Annotations
ID) have
observed
stream
flow
ABB Avery Brook = 2021-03-10 to 99.1 3,147
Bridge 2024-04-02
(01171000)
ABL Avery Brook = 2021-07-02 to 98.8 2,277
River Left 2024-04-02
(01171000)
ABR Avery Brook = 2021-03-19 to 99.3 2,214
River Right 2024-04-02
(01171000)
ABS Avery Brook = 2021-03-19 to 99.2 2,441
Side 2024-04-02
(01171000)
GR Green River ~ 2022-09-29 to 99.2 5,057
(01170100) 2024-03-29
SB Sanderson 2021-04-01 to 70.9 4,821
Brook 2024-03-22
(01171010)
WB0 West Brook 0 2022-02-01 to 99.1 7,953
(01171100) 2024-04-02
WBL West Brook 2019-02-27 to 67.7 2,256
Lower 2024-04-09
(01171070)
WBR West Brook 2021-03-25 to 64.8 2,325
Reservoir 2024-03-22
(01171020)
WBSR = West Branch =~ 2017-09-14 to 99.5 3,553
Swift River 2024-03-28
(01174565)
WW West Whately = 2021-04-06 to 70.2 2,510

(1171005)

2024-04-09

EGUsphere\

Training Camera

period
CV of
log10(Q)

0.8

0.8

0.8

1.0

0.2

1.2

0.8

0.7

1.1

0.3

-2.5

stability

Low

High

Medium

High

High

Low

High

High

High

Medium

Medium

Drainage

area
(km?)

7.8

7.8

7.8

7.8

107.2

4.4

27.7

21.8

16.1

32.6

1.3

Table 1 - Summary of data collected at locations included in this analysis. Streamflow observations were originally reported
155 in a USGS data release (Fair et al., 2025). “Training period CV of logio(Q)” refers to the coefficient of variation of log-
transformed streamflow discharge during the model training period.
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Figure 2 - Map of monitoring locations in western Massachusetts, USA (Fair et al., 2025; Goodling et al., 2025). Triangles
in panels C and D indicate monitoring sites and are labelled with site identifiers listed in Table 1. Arrows in Panel D
indicate streamflow direction. Water bodies shown are from the NHDPlus Version 2 (McKay et al., 2012) (panel C) and
NHD High Resolution (Moore et al., 2019) (panel D) datasets.

2.2 Data Annotation

Training the neural network model to predict streamflow dynamics from imagery requires external site-specific
information. Because we hope to use this method in places with no other information except for the imagery, we could not
use any streamflow data in model training. Instead, we relied on people to rank pairs of images by streamflow in a process
called ‘data annotation’. In the FPE web application, users were shown two photos side-by-side and asked to indicate which
one had more streamflow (Fig. 3). The users also indicated if the images appear “about the same” or if the image was a “bad
photo” (obscured or too dark). “Don’t know” was selected if the photo is bad or if other aspects of the images made them
difficult to compare, such as a large difference in camera view or camera angle. Image pairs marked “don’t know” were not
used in model training. In this study, users were only presented with images collected during daytime (7am — 7pm). A
typical user completed an annotation in 1-3 seconds on average; if focused, an individual could perform approximately 1000

annotations in an hour. Our dataset includes 17 unique annotators who contributed to the model training; however, only two

7



175

180

185

190

https://doi.org/10.5194/egusphere-2025-1186
Preprint. Discussion started: 28 March 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

annotators represent 93.7% of all the annotations and we focus on these two in our discussion of annotator performance.
Both of these annotators were student interns (one ecology graduate student, one environmental science undergraduate
student). The student interns were associated with the project but had no specialized training or experience in streamflow

monitoring.

A .
BAD PHOTO

Which photo has more water?

LEFT (J) ABOUT THE SAME (K) RIGHT (L)

DON'T KNOW (M)

Any comments?

< PREV . Photo Pair: 2 of 100 NEXT (ENTER) >

Figure 3 — The web-based annotation interface from the Flow Photo Explorer used in this study to develop training datasets
for the ranking model.
The process of annotation was not error-free; the judgments made by individual annotators could sometimes be

incorrect. This could be through simple errors of transcription (i.e. clicking the incorrect button) or because the imagery pairs
were difficult to compare because of lighting, vegetation, or seasonal differences. These errors, if significant, could provide
spurious information to the deep learning model. We therefore quantified the performance of our annotation dataset using the
known true flow-based ranks from the co-located USGS gage data. Our primary metric was classification accuracy for the

selection of the “left” or “right” image with higher streamflow in the image pair:

P . ) — TL+TR
Q) Classification % Accuracy = —————+ 100

Where TL and TR refer to true left and true right selections and FL and FR refer to false true and right selections. We
observed that the difficulty of the selection increases, and therefore the classification accuracy decreases, if the two photos
had similar streamflow. To fully describe annotation performance, we provide our metrics as functions of the relative flow
difference between the images. The relative flow difference (A,.;) between a pair of photos shown to an annotator was
calculated as:

|Q1—-Qa|
2 = —
@ ret %(Q1+Qz)
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Where Q; and Q: represent streamflow values for the two images. For positive values inclusive of zero, the value A,.,; is
bounded to be between zero and two. A A,.,; value near zero indicates close agreement between Q; and Q, whereas a A,
value of 2 could indicate that one of the two values is approaching zero or infinity. We compute the overall classification
accuracy within binned increments of 0.1 A,,;; the unweighted binned performance is used to develop a function describing

the relationship between A,,; and classification accuracy.

2.3 Modelling Methodology

Annotated images were ranked into an ordered sequence using the previously developed SRE neural network model
(Gupta et al., 2022). The SRE neural network model takes an image as input, which includes three channels (RGB), and
generates a dimensionless, continuous-valued score representing relative streamflow as output. The score is derived by
applying a sequence of mathematical operations to the input image, including spatial convolutions, which help the model
extract relevant features from the image. During training, the model is given batches of paired images ranked by annotators
based on relative streamflow. The training objective is for the model to learn to assign a higher score to the image that the
annotator ranks as having higher flow, or to assign the same score to both images if the annotator ranks them as having the
same flow. Images are pre-processed by resizing, centre-cropping to exclude metadata bands, and normalizing. While
training, data augmentations such as random crops, horizontal flips, rotations, and colour jitter are applied to improve model
robustness, generalization, and reduce overfitting (Shorten and Khoshgoftaar, 2019). Additional detail on image pre-
processing is available in the supplemental materials. After training, the model is used to generate score predictions for all
images from a site, which are then standardized into z-scores by subtracting the mean and dividing by the standard deviation.

The imagery data were divided into training, testing, and validation splits to enable robust model evaluation. Unlike
many machine learning applications, the model learns from image pairs and not individual images; therefore, these splits are
a bit more complex to develop. When reporting model performance, we identify images that comprised pairs used for
training (“train”) or validation (“val”). Images that were not part of any annotation pair provided to the model are used for
“test”. We further divided this into “test-in”, which is coincident with the timeframe of annotation, and “test-out” (when
available) for the period following the period with annotations. “All-in” is the combined set of images, regardless of if they
are part of an annotation pair, during the annotation period. “All” is the performance for all images. We consider “test-in” to
represent a retrospective model performance, while “test-out” to represent the expected performance of a deployed
operational model on new imagery.

The sites in this study were co-located with traditional USGS streamflow gages, which enables us to evaluate model
performance relative to these instruments. Our model performance metric is Kendall’s Tau, a nonparametric rank-based
correlation coefficient (Kendall, 1938). We selected this metric because it is insensitive to monotonic transformations such
as log-transformation and percentile calculations, making it appropriate to compare values on different scales and with
different distributions. As a metric it is strict regarding timing; short-lived peaks, if slightly mis-timed, will result in low

Kendall’s Tau. Because it is based on ranks, it is insensitive to the magnitude difference between two values. As a result,

9
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low-flow observations, which are more common, have a greater influence on the resulting Kendall’s Tau than short-lived
high-flow observations.

To provide a preliminary understanding of the factors influencing model performance we present pairwise
relationships between annotation accuracy, streamflow variability, camera stability, and model performance. For
comparisons among the numeric values we present the Pearson’s correlation coefficient and two-sided p-value calculated
with the cor.test function in R version 4.3.2 (R Core Team, 2021). For comparisons between numeric values and the
categorical camera stability metric, we present the results of the nonparametric Kruskal-Wallis test to evaluate if the
distribution varies among the categories (Kruskal and Wallis, 1952). If significant, we perform Dunne’s post hoc pairwise
multiple comparison test to identify which categories have statistically different distributions (Dunn, 1964). The Kruskal-

Wallis and Dunne’s tests are computed with the rstatix R package (Kassambara, 2023).

2.4 Sensitivity analysis

We performed a sensitivity analysis to understand how many person-generated annotations are required to achieve
acceptable performance. In this case, the target performance level was that achieved by training the model with all available
image pair annotations for a given site. We created nested subsets of the annotations, beginning with increments of 100 up to
500, then using larger increments of 250 up to 1500, and finally using increments of 500 up to 3000, with additional subsets
at 4000 and the maximum number of available annotations. Smaller increments were used at the lower end of the annotation
range to capture the more substantial improvements in model performance that are typically observed with initial increases
in training data. Each subset was a strict superset of the previous one, meaning that each larger subset contained all the pairs
from the smaller subsets plus additional pairs. This allowed us to assess how increasing the volume of training data impacts
model performance and to identify the point where performance plateaus, avoiding unnecessary annotation efforts that may
not significantly improve performance. The sensitivity analysis reported the Kendall’s Tau model performance metric is for
the “test-in” data split for daytime images (7am — 7pm).

To ensure the robustness of our findings, the analysis was repeated five times. For each repetition, we randomly
permuted the order of the annotations before generating the nested subsets, thereby mitigating any potential variance that

could arise from the specific sequence of training samples.

3 Results
3.1 Annotation results

Annotation performance in our dataset was high (average 92.2% accuracy) and was generally consistent across sites
and annotators. Accuracy was well-described by an increasing function of the relative flow difference (global 4" order
polynomial, R?> = 0.89, Fig. 4, red lines). At all sites, annotation accuracy neared 100% accuracy above a relative flow

difference of 1 (which occurs when one image has three times as much streamflow as the other). As the relative flow
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difference neared 0, classification accuracy approached 50%, which is equivalent to guessing between the photos. Similar
curves are observed for the two primary annotators (represented by symbols in Fig. 4). To characterize the overall accuracy
of the annotation at a site, the percent accuracy of all annotations regardless of relative flow difference is reported in each
panel of Fig. 4. The site with the lowest overall annotation performance—West Whately, with an 84% overall accuracy—

had the lowest streamflow coefficient of variation a “medium” level of camera stability (Table 1).

Annotation Performance Summary
Only annotators with at least 1000 annotations

Avery Brook Bridge Avery Brook River Left Avery Brook River Right Avery Brook Side
{overall accuracy = 0.9)  (overall accuracy = 0.95) (overall accuracy = 0.91) (overall accuracy = 0.93)

e f

Green River Sanderson Brook West Brook 0 West Brook Lower
(overall accuracy = 0.91) (overall accuracy = 0.93) (overall accuracy = 0.94) (overall alccuralcg.r 0.94)

wi cecii eEdi i

West Brook Reservoir  West Branch Swift River West Whately
{overall accuracy 0.96) (overall accuracy = 0.89) (overall accuracy = 0.84)

08

06 )‘
L ]

04

0 05 1 15 20 05 1 15 20 05 1 15 2
IQ1- Qg

%(Q1+Q2)

0.4

o
[a]

=
.

% accuracy of LEFT/RIGHT selection

Relative Flow Difference (

Annotator @ dsdse @ ffa2  #of annotations ® 250 @ s00 @ 750 @ 1000

Red line is global fit line. Formula is: y= -0.1 x*+ 0.571 x>+ -1.24 x>+ 1.25 x+ 0.488
Adj. RZ:0.889
Figure 4 — Annotation accuracy for each site as a function of the relative difference in streamflow between the two images
shown to the annotator. Percent accuracy was computed for annotations in binned intervals of 0.1 relative flow difference.
Two annotators (represented with symbols and named with 5-digit alphanumeric identifier) performed annotations across

the 11 camera sites. The red line is a 4" order polynomial fit across all 11 camera sites, with equation and fit statistic shown
at the bottom of the figure.
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3.2 Modelling Results

Predictions from models trained on person-generated annotations were found to represent both individual storm
events and inter-annual hydrologic changes with a satisfactory degree of fidelity, with “test-in” Kendall’s Tau values ranging
from 0.60 to 0.83 (Fig. 5). This “test-in” set represents expected performance during the same period as for which
annotations were created. The “test-out” period, while not available for all sites, represents predictions for a new period
following an annotation as in an operational prediction with a deployed model. The value “all-in” is a mix of
test/training/validation data occurring during the training period and is representative of a retrospective prediction or
hindcast. The value “all” is for all imagery in the dataset combined. Most models have a slight decrease in performance
(approximately 0.02) when comparing the training to test-in. This decrease is a measure of overfit to the data. Green River
has the greatest decrease (0.08, or 10%). A review of the annotations for this site shows a low density in annotations at the
end of the training period that could account for this difference. Where available, the test-out performance is lower than test-
in performance (mean decrease is 0.20), suggesting a decreased ability to generalize to new flow conditions or camera views.

Within our camera monitoring dataset, we have several co-located cameras that were independently annotated and
trained (lighter colour bars in Fig. 5). Four co-located cameras exhibited similar test-in performance, although a
downstream-facing view had slightly lower performance than the other three. For the test-out period, two sites (Avery Brook
River Left and Avery Brook Side) have much better performance than the other two. These sites have “high” camera
stability and greater annotation accuracy than the other two sites. The streamflow has the similar (but not identical)
coefficient of variation due to the differing monitoring timeframes among the cameras.

Model prediction timeseries show a clear correspondence with observed streamflow timeseries, especially when
both datasets are displayed as rank percentile units (Fig. 6; supplemental materials). Major hydrologic events such as a
drought that occurred in this area from June- September of 2022 and a prolonged wet period in July-August of 2023 are
visible in the estimates derived solely from the imagery model. The duration and magnitude of major hydrologic events
match well between observed streamflow and model predictions. Short-lived peaks from individual storm events are also
well-characterized by their timing and general magnitude.

Model performance of the “test-in” set, annotation performance, flow variability, and camera stability were found to
be highly interrelated (Fig. 7). Positive correlations were observed between flow variability and annotation accuracy (Panel
A), flow variability and model performance (Panel C), annotation accuracy and model performance (Panel D). West Whately
is an outlier to some extent; we report Pearson’s correlation coefficients and p-values with and without this camera site. The
relationship between annotation accuracy and model performance (Panel D) has the highest correlation and is least affected
by the outlier presence. Camera stability, a categorical variable, was weakly related to annotation accuracy (Panel B). The
Kruskal-Wallis test indicates that the annotation performance is non-identical across the three stability classes at the 0.05
significance level. The post hoc Dunn’s pairwise multiple comparison test shows the only significant difference is between

the “high” stability and “medium” stability classes. The Kruskal-Wallis test indicates there is no significant difference in
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Kendall’s Tau among the stability classes (Panel E). Among the four cameras located on the same stream reach (shown with
305 lighter shading), the highest performance in annotation accuracy and prediction Kendall’s Tau was observed for Avery

Brook River Left, which had a highly stable camera.

Multi-site performance summary

frain val test-in test-out al-in all
fuenbiok 1 077 0.75 | 073| ||oas] 073 | 0.60 |
W i TR 0.3 | 082 081 057 | 0.81 | 0.78]
R Brook 1 077 0.76 | 075| (D34 0.75 | 0.67 |
Py 0.79 0.79 0.77 0.59

Green River [GR]
Sanderson Brook [SB]

West Brook 0 [WBO0]
West Brook
Lower [WBL]

West Brook
Reservoir [WBR]

West Branch
Swift River [WBSR]

West Whately [WW]

0 02505075 10 025 05075 10 025 05075 10 025 05075 10 025 05075 10 025 05 0.75 1
Kendall's Tau

color EI Co-located Cameras . Individual Camera

Figure 5 — Summary of model performance, as defined by Kendall’s Tau correlation, between observed and estimated

310 streamflow percentile. Results are presented for 11 sites, 4 of which are co-located. Site abbreviations shown in brackets.
Results are presented for six different sets of the data. The set “test-in” represents unseen images coincident with the
training period. The set “test-out”, which is not available at all locations, represents unseen images following the training
period.



315

320

https://doi.org/10.5194/egusphere-2025-1186
Preprint. Discussion started: 28 March 2025
(© Author(s) 2025. CC BY 4.0 License.

10.00

Streamflow
(cubic meters per second)

EGUsphere\

24

Predicted Score
(unitless, z-score transformed)

24

100 %

Rank Percentile

Avery Brook River Right [ABR] Inset
Test-out period
]
Inset
1.00
A .
0.10
L]
N .a...o-
0.01 eees®e ...".""O---.
Wh
L]
0
14 .
L ] L ] |
s000. 890, u 000040 ®oe, o
75 %
50 % L}
25 %
L}
0% sesggdecce .e MITCLL

2021-09-01 2022-03-01 2022-09-01

colour — Daily Mean Prediction —— Daily Mean Streamflow

2023-03-01

Sub-daily Prediction

2023-09-01 2024-03-0°

Sub-daily Streamflow

2022-09-01

Figure 6 — Timeseries prediction at a single site representing intermediate model performance. Top two panels show the
streamflow, middle two panels show the predicted model score, bottom two panels show both when transformed to rank
percentile. The left column indicates the full period of record, the right column is an inset. In the inset plots, daily means are
plotted as dots and the 15-minute interval predictions are plotted with lines. Prediction timeseries for all sites are shown in

the supplemental materials.

14



325

330

https://doi.org/10.5194/egusphere-2025-1186
Preprint. Discussion started: 28 March 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Potential controls on 'test-in'

performance
0 1.00
A B
WBR WBR
& ABL LI )
© 0.95 © 095 o ABL
=] WBL e WBO > WBL\WBO
3 a2e | 8 A »
< GR\' ABS SB| <« ABS DABR SB ABB
R 0.90 SABR | X000 ‘R 4
S ABB s WBS‘R
g WBSR g [all] K-W <0.05
£ 085 £ 085 High & Low: ns WW
< [y < ) . L4
Ww [w/o WW] R: 0.652 ; p<0.05 High & Medium: *
[all] R: 0.856 ; p<0.05 Low & Medium: ns
0.80 0.80
2 -1 0 1 High Medium Low
CV[log10(streamflow)] Camera Stability
0.9 0.9
WBO0 WBQ
ABL‘ /—;.BL
0.8 \”WB‘R 0.8 SB‘ Yoo
3 WBR
2 ABs" SB| 3 ABR ABS
» WBL*"ABR | © ABB WaL
= s 8 = T
S 47 GR ABB S g7 GR
g0 » g0 »
< WBSR N WBSR
0.6 .WW [w/o WW] R: 0.654 ; p<0.05 0.6 .\rNW [w/o WW] R: 0.832 ; p<0.05
[all] R: 0.866 ; p<0.05 [all] R: 0.933 ; p<0.05
2 -1 0 1 0.80 0.85 0.90 0.95 1.0
CV[log10(streamflow)] Annotation % Accuracy
0.9
WBOQ
-
ABL}J
0.8
. SWBR B
s ABS HBR
» ;WBL A Explanation
[
Qo7 GR » ABB o Co-located Cameras
2 WBSR ®  Individual Camera
0.6 »
WW  [alll K-W >= 0.05
High Medium Low

Camera Stability

Figure 7 — Relationships between flow variability and annotation accuracy (panel A), camera stability and annotation
accuracy (panel B), flow variability and model performance (panel C), annotation accuracy and model performance (panel
D), and model performance and camera stability category (panel E). Flow Variability is quantified with the coefficient of
variation of log-transformed streamflow. Model performance is the “test-in” split. Point labels refer to site number listed in
Table 1. The four co-located cameras are indicated with light grey square symbols. Panels A, C, and D have text indicating
the Pearson’s correlation coefficient and significance at the p<0.05 level; values are provided for without the West Whately
site (“w/o WW”) and for all sites (“all”). Panels B and E have text with the Kruskal-Wallis significance test at the p<0.05
level. Where significant, the post hoc Dunn’s pairwise multiple comparison test is performed. An asterisk indicates
significance at the p<0.05 level while “ns” indicates not significant at that level.
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3.3 Sensitivity analysis

The sensitivity analysis we employed allowed us to examine the relationship between number of annotations and
model performance. For most sites, “test-in” model performance improves significantly from 100 annotations to 500
annotations, as the models learn more relevant features for inferring relative streamflow (Fig. 8). Generally, the spread of
individual iterations (n = 5) was small relative to the performance improvement associated with increasing annotations. The
model performance plateaus around 1000 annotations for most sites. Beyond this point, additional annotations offer minimal

gains, suggesting that the model is not extracting further useful information from the additional annotations.

Model Performance vs. Number of Annotations
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Figure 8 - Model performance as function of the number of annotations used to train the model. Coloured lines indicate
individual scaling experiments (n=>5), the black line and points indicate mean performance. Dotted vertical line shows 1000
annotations. Axis limits vary among panels. Performance computed on daytime (7am — 7pm) photos only. Subplots labelled
with site name and number described in Table 1.
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4 Discussion

We find that a low-cost methodology for monitoring relative streamflow dynamics in headwater streams is effective
at characterizing interannual hydrologic events and short-term storm responses at the stream sites within our study. Based on
our encouraging results, we anticipate the approach will provide a valuable alternative to traditional stream gaging methods
when relative streamflow dynamics information is needed but the streamflow discharge is not required. The person-
generated annotation, model performance patterns, and sensitivity analysis performed in this study have implications for how
we refine the modelling approach and provide guidance to users as this platform evolves.

This study was our first insight into annotator accuracy. In a previous study outlining the SRE method (Gupta et al.,
2022), the ability to correctly rank the image pair was varied systematically using simulations. In that study, in addition to a
perfect annotator, the authors simulated annotations with varying ability to discern between “same” apparent streamflow and
“left” or “right” streamflow. The thresholds they tested included 10%, 20%, and 50% of the lesser discharge. The authors
found a less discerning annotator had to perform more annotations to train a model that reached similar performance as one
trained on annotations from a more discerning annotator. However, these annotators could not make mistakes; incorrect
labels were not introduced. Conversely, in this study, people performed annotations. While the overall accuracy of the
annotators at individual sites ranges from 84% - 96%, these accuracy statistics obscure another feature of annotation —
annotators are near perfect at distinguishing large differences in flow and less accurate at distinguishing small differences in
flow. Even when provided with a “same” button and a “don’t know” button, annotators make mistakes at small differences
in flow. This is likely due to the difficulty of the task in the presence of camera angle shifts, obscuring vegetation, changes in
channel morphology, and the fact that it is simply difficult to discern small differences in streamflow visually. Annotation
performance in our dataset followed similar patterns for two annotators and across 11 camera sites, such that all data could
be reasonably fit with a single mathematical function (see Fig. 4). Future studies could use this function to simulate
annotator performance more accurately than previous threshold-based simulations. This study primarily relied on annotations
from two individuals with similar backgrounds and a single annotator worked on each site, resulting in a potential conflation
of annotator and site variability. Future work using larger annotation datasets or designed common annotation sets could
better assess the range of skill across individuals and backgrounds.

This study’s models, trained with person-generated annotations, produced a timeseries of streamflow percentile
estimates analogous to a relative hydrograph that can be used to monitor the timing, duration, and relative magnitude of
hydrologic events (Fig. 6; Supplemental Materials). All performance metrics in this paper are provided for the original
approximately 15-minute interval frequency of the imagery and streamflow data, though the timeseries plots of model
predictions do show substantial sub-daily variability in streamflow percentiles. For example, at times in late 2023, daily
percentiles at site Avery Brook Bridge consistently range from nearly 25 % to 90% (Fig. 6). A review of individual images
during times of high sub-daily percentile variability shows that outliers in model prediction can be introduced by the

presence of sun glare on the camera, vegetation blocking the camera view, twilight conditions, fog/haze, and other factors
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that present the model with unfamiliar views (Supplemental Materials, section 3). Since we allow annotators to exclude
photos that are obscured, the model is not trained on these images which leads to poorer performance. A focus of future
work on identifying and excluding these images will likely reduce the variability at a sub-daily scale resulting from poor
images. Even in the presence of these features, the daily mean values plotted correspond well with major hydrologic events,
such as a drought in the summer of 2022 that affected the region, and individual storm events. Users of this modelled relative
streamflow data could create daily mean values if they were interested in results at this scale. However, we report sub-daily
model performance because the headwater streams that are a focus of this work are highly responsive to storm events and it
is also important to capture these events to understand and characterize streamflow dynamics.

Where available, this study found lower model performance for the ‘test-out’ period than the ‘test-in’ period,
though the degree of performance decrease varied among sites. Even for the four co-located sites on Avery Brook the
decrease in model performance from ‘test-in" to ‘test-out’ varied substantially (Fig. 5). We believe this may be due to a
combination of new camera views not seen in training and the fact that the “test-out” period often included winter which can
be a period of lower performance due to snow obscuring the stream. Due to the limited availability of sites with “test-out’
periods, we are unable to draw conclusions that might hold true for other sites. Creating models from longer paired imagery
and streamflow records with more extensive ‘test-out” periods will support future efforts to minimize performance loss for
the “test-out’ period, likely through improvements in the image augmentation steps of the modelling procedure.

Model performance among sites seems to be driven by the variability of the streamflow during the monitoring
period. We find that annotator and model performance at sites that have very steady flow is low relative to sites experiencing
wide variation in observed streamflow. To some extent this is a consequence of the Kendall’s Tau as a performance metric;
where a small range in the overall data causes small fluctuations in stream discharge to manifest as large fluctuations in rank
percentile. However, physical characteristics matter— for this method to perform well the stream needs to have visible
changes in streamflow during the training period. The site in this study with the lowest streamflow coefficient of variation,
West Whately, also had a very low stream depth such that the water surface was difficult to see within a meandering channel
and in the presence of leaves. Future work with more sites will be better positioned to evaluate how camera stability, flow
variability, other factors affect annotation and model performance. This study refines user guidance in two important ways.
First, our results suggest that sites that experience a wide range of flows (or for long enough that a wide range of flows are
experienced) will have higher model performance. Second, since our simple camera stability classification has a weak
association with annotator accuracy and no significant relationship with model performance, the method is robust to slight
changes in camera angle and can still be used if these shifts are present. More complex frame-tracking algorithms to quantify
camera stability could further improve insights into the robustness of the method to camera shifts.

A key requirement of this methodology is the need for a person to perform annotations on the imagery datasets.
Anecdotally, users typically annotate at an average pace of 1,000 image pairs per hour using the interface. However, in
practice, annotations are typically performed in smaller batches (100-200 images per batch) with breaks in between resulting

in a slower effective pace. The sensitivity analysis performed in this study helps evaluate the number of annotations to reach
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near-optimal model performance while not wasting annotator effort. For our available sites and annotation datasets we
approximate 1,000 annotations as a reasonable guideline when creating a new model. While there is slight variability among
the sites, the consistency of the shape of the curves shown in Fig. 8 suggests that a single guideline is reasonable. The
number of annotations may also be controlled by factors not included in the sensitivity analysis such as the record length and
annotator accuracy. Additional sensitivity analyses, likely using synthetic annotation datasets, could further refine the
guideline for how many annotations to perform when developing ranking models at new sites.

The output of the deep learning model is a relative flow percentile estimate. Although streamflow discharge (i.e. a
flow rate with units of volume per time) is a more familiar metric, relative flow has value for several applications. With
relative flow estimates we can 1) evaluate the duration and timing of disturbances such as drought and flood events, 2)
provide inputs to statistical models such as ecological population models that may not require absolute streamflow accuracy,
3) establish or confirm relationships between streamflow at a study reach and at other nearby locations, 4) evaluate the
ability of models to simulate streamflow dynamics at a study reach, 5) provide the basis for counting the exceedance of site-
relevant thresholds (for example, the number of times a roadway inundated) . These outputs are aligned with the work of
other authors to use semiquantitative observations to study headwater streams, for example stream connectivity (Bellucci et
al., 2020; Kaplan et al., 2019). Nevertheless, some applications require absolute flow, and in future work we intend to
explore approaches to transform relative flow estimates produced by the SRE model into absolute streamflow discharge
estimates, either by periodically measuring discharge at the site or by using discharge data from nearby locations (if
available). For now, we intend to communicate the appropriate use of these relative percentile estimates and avoid implying
that streamflow discharge is produced by this work.

Because our study reports relative rather than absolute streamflow, it is difficult to directly compare our model
performance against other similar work. We report our performance with the rank-based Kendall’s Tau value, which is
analogous to a nonparametric R? value appropriate to our model outputs. Similar studies using timelapse camera imagery to
monitor rivers focus on reproducing point-in-time stage observations, often using in-channel calibration targets such as staff
gages (Chapman et al., 2022; Eltner et al., 2018; Gilmore et al., 2013; Kim et al., 2011; Lin et al., 2018; Nguyen et al.,
2009). These studies vary in approach, though typical steps include identifying the target and water surface, performing an
orthorectification of the image into real world space, and conducting a measurement of a visual target. Typically, authors
report sub-centimetre level accuracy. For example, a field study of uncertainty of one system reported £5 mm accuracy at the
90% confidence interval in a tidal marsh environment with tranquil waters, though the authors noted this system was
unsuited to fast-moving turbulent water such as the mountainous headwater streams in our dataset (Birgand et al., 2022). A
deep-learning water segmentation-based approach reported Spearman correlations between independent stage measurements
ranging from 0.57 to 0.94 at a single well-characterized gage site in eastern Germany (Eltner et al., 2021). We note these
performance metrics reported by other similar studies, though due to differences in the model outputs our performance
metrics are not directly comparable. Where evaluated in the field, most similar studies report results for single sites and/or

for durations of less than 1 year (Birgand et al., 2022; Eltner et al., 2021; Leduc et al., 2018; Liu and Huang, 2024; Schoener,
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2018), making this study’s multi-year monitoring of 11 camera sites a comparatively robust representation of model
performance.

This work, while promising, is limited in a few important ways. Primarily, this system is not (and is not intended to
be) a replacement for high accuracy stream stage or discharge measurements that are required for many applications such as
computing streamflow trend, calculating nutrient loads, or supporting water management decision making. Users of this
system must understand the relative nature of the results and determine if relative streamflow hydrographs are suitable for
their application; we envision suitable applications to include habitat characterization, aquatic species population dynamics
modelling, refining process understanding in small catchment studies, intermittent stream monitoring, and characterizing
event (i.e. flood or drought) timing. In this study, model training and prediction is limited to daytime imagery, which we
defined simply as between 7am and 7pm local time. While these cameras also have infrared flash that illuminates the
channel, the degree to which the scene is visible at night varies significantly between sites. The imagery at night becomes
greyscale and we expect that different portions of the imagery become important for a model. It is unclear if nighttime
imagery is best modelled with both day and nighttime imagery or if a night-only model should be trained, and future work
may investigate this. We also noticed that lens fog, camera glare, vegetation blockages, and other visual impediments had a
negative impact on model performance. When present, these image issues typically resulted in abrupt high or low outliers in
model score. For this analysis we retained these predictions as part of the overall evaluation. We expect computer vision
algorithms to detect and remove these images which would further improve model performance. Data collection on the Flow
Photo Explorer platform enables users to flag “bad” images during data annotation, which will enable us to develop outlier

detection algorithms for this purpose.

5 Conclusions

The camera-based methodology discussed here offers a novel approach to estimating streamflow. Its low cost and
effort requirements should make it feasible to create dense observation networks to fill gaps in existing streamflow
monitoring observations and thereby improve understanding of streamflow dynamics in headwater streams. While currently
limited to estimates of relative streamflow trained as single-site models, we expect continued improvements that will expand
the applicability and improve the ease of training models for new locations. The purpose of this paper was to answer
questions regarding based on an initial set of monitoring stations. These findings will guide further development of the Flow
Photo Explorer integrated web platform that allows users to upload, annotate, model, and interpret headwater stream
imagery. To summarize, this study answers the following questions:

e How accurate are people at ranking images by streamflow?
o Overall annotation accuracy of left/right selection ranged from 84% to 96% (average of 92.2%) among the
11 camera sites. While limited to primarily two individuals, we see that our annotators are nearly 100%

accurate at ranking stream image pairs when there are large differences in observed streamflow. Small
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differences in streamflow between image pairs were more difficult for the annotators to identify. Due to
consistency among sites, the accuracy of person-generated streamflow annotations used in this study can
be reasonably simulated with a single globally fit equation.

e How accurate are image-derived relative hydrographs developed using person-generated annotations?

o Kendall’s Tau values for streamflow percentile predictions ranged from 0.6 to 0.83 for unannotated days
within the training period. These represent the retrospective model performance. Lower performance was
observed for predictions on data collected after the training period, which may have a different distribution
of streamflow or changes to the image scene. Where available, Kendall’s Tau values for the post-training

period range from 0.34 to 0.74.

Which factors influence ranking model accuracy that and indicate which unmonitored catchments would be suitable
for low-cost camera monitoring?

o The primary factor describing among-site differences in performance was streamflow variability.
Describing relative streamflow changes in streams with steady flow was challenging, in part due to our
relative (percentile-based) metrics of performance. We expect better performance for streams that exhibit
large stage variations, are seasonally dry, or have large seasonal variations in flow.

e How many person-generated annotations are required to achieve stable ranking model performance?
o An experiment indicated that for most sites there were diminishing improvements in performance after
about 1,000 pairwise annotations. We therefore conclude this is a reasonable minimum number of

annotations to develop a ranking model.

Code Availability

Modelling code is provided at this GitHub code repository: https://github.com/EcoSHEDS/fpe-model (fpe-model v0.9.0).

Data Availability

The imagery, streamflow data, and model results used in this study are publicly visible on webpage

(https://www.usgs.gov/apps/ecosheds/fpe). Streamflow data were originally reported in a U.S. Geological Survey data

release (Fair et al., 2025). Model predictions, annotation data, and sensitivity analysis data are also available as a USGS data

release (Goodling et al., 2025).
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